Question			Answer	Marks	Guidance
1	(a)		Arrow to the left	B1	
	(b)	(i)	1500 (eV)	B1	Note: $2.4 \times 10^{-16}(\mathrm{~J})$ on the answer line scores zero
		(ii)	$\begin{aligned} & (\mathrm{KE}=) 1500 \times 1.6 \times 10^{-19}\left(=2.4 \times 10^{-16} \mathrm{~J}\right) \\ & 2.4 \times 10^{-16}=\frac{1}{2} \times 9.11 \times 10^{-31} \times v^{2} \quad \text { (Allow any subject) } \\ & v=2.3 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf from (b)(i) Allow: 2 marks for 5.3×10^{14} (answer not square-rooted) Note: $v=\sqrt{\frac{2 \times 1500}{9.11 \times 10^{-31}}}=5.74 \times 10^{16}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ does not score
	(c)	(i)	$\begin{array}{ll} \hline F_{(\mathrm{E})}=E q & \text { and } \quad F_{(\mathrm{M})}=B q v \\ E q=B q v & \text { (This mark is for equating the two equations) } \\ \text { (Hence) } v=\frac{E}{B} \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow an equivalent approach Allow any subject
		(ii)	Force due to magnetic field > force due to electric field Electrons drift 'downwards'	B1 B1	Allow: magnetic force > electric force or $F_{\mathrm{M}}>F_{\mathrm{E}}$ or $B q v>E q$ or magnetic force is bigger and electric force is the same Note: This mark can be scored on Fig. 3.2
			Total	9	

Question			Expected Answers	Marks	Additional Guidance ignore any edge effects
2	a	(i)	uniformly spaced, vertical parallel lines must begin and end on the plates with a minimum of three lines arrow in the correct direction down	B1 B1	
		(ii)	$\begin{aligned} \mathrm{E}=\mathrm{V} / \mathrm{d} \quad \mathrm{E} & =60 / 5 \times 10^{-3} \\ & =12000\left(\mathrm{~V} \mathrm{~m}^{-1}\right) \end{aligned}$	A1	
	b	(i)	Use of energy qV and kinetic energy $=1 / 2 \mathrm{mv}^{2}$ $\begin{aligned} & v=[(2 \mathrm{qV}) / \mathrm{m}]^{1 / 2} \\ & v=\left[\left(2 \times 3.2 \times 10^{-19} \times 400\right) / 6.6 \times 10^{-27}\right]^{1 / 2} \\ & v=1.97 \times 10^{5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	M1 M1 A0	
		(ii)	$\begin{aligned} a=F / m & \quad a=E q / m \\ a & \left.=\left(12000 \times 3.2 \times 10^{-19}\right) / 6.6 \times 10^{-27}\right) \\ & =5.82 \times 10^{11}\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	C1 A1	Both required for the mark
		(iii)	$\begin{array}{rl} 1 & \mathrm{t} \end{array}=\underline{\left(16 \times 10^{-3}\right) / 2 \times 10^{5}} \mathrm{l}=8 \times 10^{-8}(\mathrm{~s}) .$	$\begin{aligned} & \text { M1 } \\ & \text { A0 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	Answer will depend on number of sf used by candidate. Using $u=2 \times 10^{5}$ scores $0 / 2$ Allow slight variation in answers that follow from the candidates working

c	c	$\begin{aligned} & \mathrm{Eq}=\mathrm{Bqv} \\ & \mathrm{~B}=\mathrm{E} / \mathrm{v}=12000 / 2 \times 10^{5} \\ &=0.060(\mathrm{~T}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow one sf unless answer is 0.061 when using $\mathrm{v}=1.97 \times 10^{5}$
d	d	velocity (produced by p.d / 400 V) is less force due the magnetic field is reduced / Bqv is less / force due to the electric field is unchanged hence beam deflects down	B1 B1	Allow the resultant force is downward Allow towards the lower plate
		Total	[15]	

Question		Expected Answers	Marks	Additional Guidance
3	a	$\begin{aligned} \mathrm{F} & =\mathrm{Q}_{1} \mathrm{Q}_{2} / 4 \pi \varepsilon_{0} \mathrm{r}^{2} \\ & =\left(1.6 \times 10^{-19} \times 1.6 \times 10^{-19}\right) / 4 \pi \varepsilon_{0}\left(2 \times 10^{-15}\right)^{2} \\ & =57.5(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow use of 9×10^{9} instead of $1 / 4 \pi \varepsilon_{0}$ (using this gives 57.6) Allow ≥ 2 sf (58) If correct formula quoted and then AE (e.g. not squaring r or not squaring Q) then allow ecf in final answer for $2 / 3$
	b	attractive strong (nuclear force)	B1	Do not it holds them together
	c	as the proton travels towards the stationary proton it experiences a repulsive force that slows it down. (It needs a high velocity) to get close enough (to the proton) / for the (attractive) short range force to have any effect	B1 B1	
		Total	[5]	

